How long is a hillslope?
نویسندگان
چکیده
Hillslope length is a fundamental attribute of landscapes, intrinsically linked to drainage density, landslide hazard, biogeochemical cycling and hillslope sediment transport. Existing methods to estimate catchment average hillslope lengths include inversion of drainage density or identification of a break in slope–area scaling, where the hillslope domain transitions into the fluvial domain. Here we implement a technique which models flow from point sources on hilltops across pixels in a digital elevation model (DEM), based on flow directions calculated using pixel aspect, until reaching the channel network, defined using recently developed channel extraction algorithms. Through comparisons between these measurement techniques, we show that estimating hillslope length from plots of topographic slope versus drainage area, or by inverting measures of drainage density, systematically underestimates hillslope length. In addition, hillslope lengths estimated by slope–area scaling breaks show large variations between catchments of similar morphology and area. We then use hillslope length–relief structure of landscapes to explore nature of sediment flux operating on a landscape. Distinct topographic forms are predicted for end-member sediment flux laws which constrain sediment transport on hillslopes as being linearly or nonlinearly dependent on hillslope gradient. Because our method extracts hillslope profiles originating from every ridgetop pixel in a DEM, we show that the resulting population of hillslope length–relief measurements can be used to differentiate between linear and nonlinear sediment transport laws in soil mantled landscapes. We find that across a broad range of sites across the continental United States, topography is consistent with a sediment flux law in which transport is nonlinearly proportional to topographic gradient. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
منابع مشابه
The Influence of Hillslope Length and Direction on Runoff and Soil LossUnder Natural Rainfall in an Arid Region
Analyzing variability of measured runoff and soil loss data under different condition of measurement system, are critical for advancing erosion science, evaluating hydrologic models, and designing erosion experiments. For this purpose, the current study aimed to evaluate how runoff and soil loss are influenced by hillslope direction and length in Sangane arid rangeland, Razavi Khorasan Provi...
متن کاملSpatial and temporal analysis of hillslope-channel coupling and implications for the longitudinal profile in a dryland basin
The long-term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope-channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment ...
متن کاملConnectivity due to preferential flow controls water flow and solute transport at the hillslope scale
Understanding the major controls on water flow and solute transport at the hillslope scale remains a major topic of research despite numerous hillslope experiments at different sites around the world. For example, the influence of lateral preferential flow due to pipes or macropores in the subsurface flow is still unresolved. Experiments show the often paradoxical finding of fast entry of event...
متن کاملGEOMORPHOLOGY. Experimental evidence for hillslope control of landscape scale.
Landscape evolution theory suggests that climate sets the scale of landscape dissection by modulating the competition between diffusive processes that sculpt convex hillslopes and advective processes that carve concave valleys. However, the link between the relative dominance of hillslope and valley transport processes and landscape scale is difficult to demonstrate in natural landscapes due to...
متن کاملThe Formation of River Channels
We consider a deterministic model of landscape evolution through the mechanism of overland flow over an erodible substrate, using the St. Venant equations of hydraulics together with the Exner equation for hillslope erosion. A novelty in the model is the allowance for a nonzero bedload layer thickness, which is necessary to distinguish between transport limited and detachment limited sediment r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016